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Abstract— Motion tracking algorithms using inertial measure-
ment units (IMU) are commonly evaluated against ground truth
measurements from optical motion capture systems (OMC). A
fair comparison between IMU and OMC requires accurate frame
alignment between the two systems. Existing methods address
the local and global frame misalignments as separate issues,
either relying on various assumptions or precise calibration
measurements. In this work, we propose an assumption-free
data-based method that simultaneously aligns both local and
global frames via quaternion-based least squares optimization.
For performance evaluation, we compared the proposed method
with methods based on commonly accepted assumptions. Using
human kinematics data from 6 participants, the proposed
method produced the best alignment results with error less
than 1.5° and its error profile was the least correlated with
motion. We then conducted sensitivity analysis on input data
characteristics and showed the necessity of using data with
sufficient range of motion to ensure alignment accuracy. Lastly,
we demonstrated that the proposed method could be used for
isolating IMU drift during dynamic movements. The proposed
alignment method could serve as a valuable tool for developing
and evaluating IMU-based motion tracking algorithms.

I. INTRODUCTION

Analyzing human movements in the real-world environment
is important in many applications, including rehabilitation,
ergonomics, entertainment, and human performance augmen-
tation [1]-[5]. Inertial measurement units (IMUs) have been
one of the most commonly used wearable sensors for motion
tracking outside lab-based environments, as they are easily
portable, lightweight, and simple to attach to the body. IMUs
fuse gyroscope, accelerometer, and magnetometer signals
to estimate 3D orientations. Joint kinematics can then be
estimated by comparing relative orientations of IMUs attached
to adjacent body segments. Kinematic estimation methods
using IMUs have constantly been advancing, with specific
topics ranging from algorithmic breakthroughs (e.g., rejecting
magnetic disturbances [6]-[9]) to practical guidelines (e.g.,
robust calibration routines [10], [11]). Although there exists
an abundance of developments in IMU algorithms, often there
is a lack of clarity on evaluation methods to compare an IMU
orientation estimate to a ground truth reference, often an
optical motion capture system (OMC).
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The process of comparing IMU orientation to a ground
truth reference is crucial for algorithm development and
surprisingly not trivial. The key challenge of orientation
comparison comes from the fact that IMUs and OMCs
describe orientations in terms of different coordinate frames
[12], [13]. In geometry, orientations are expressed as rotation
of a local coordinate relative to a global reference frame. IMU
and OMC measure different local frame orientations with
respect to different global references, hence any mismatch in
either their local or global coordinate frames can significantly
affect kinematics tracking and evaluation accuracy [14], [15].

The local and global frames of IMU and OMC are not the
same due to the differences in their definitions, calibration,
and measurement methods. Local frames of IMUs are defined
by the orientations of their sensing chips, with the axes aligned
to the geometry of the chips. On the other hand, local frames
of OMCs are defined by any group of 3 or more rigidly
mounted reflective markers. These markers have been placed
on human body segments to act as trackers for anatomical
coordinate frames [16], [17] or sometimes directly coupled
with IMU cases to validate IMU-based algorithms [11], [18].
The global frames of IMUs are defined using the direction of
gravity and the heading of the Earth’s magnetic field, whereas
global frames of OMCs are usually aligned with the walls or
the floor tiles of the motion capture lab. Therefore, as IMU
and OMC measure orientations with different local and global
frames, alignment of these frames is essential for reliable
comparisons.

As a highly prevalent issue, IMU to OMC frame alignment
has been explored using a range of approaches, from manual
to algorithmic. However, current methods rely on various
assumptions and treat global and local frame alignments as
two standalone issues. In existing approaches, global frames
could be aligned by representing the IMU global frame in the
OMC global frame by estimating the gravity vector [19] and
the Earth’s magnetic field [20]. An alternative method places
OMC markers directly on the IMU case and assumes that
the two measurement systems have identical local frames.
With this assumption, global frames can then be aligned
mathematically [21]. However, perfect alignment between an
IMU and its case cannot be guaranteed; for instance, Xsens
MTw, one of the most commonly used IMUs for kinematics
tracking, could have up to 3° of sensor-to-case misalignment
[22]. Without assuming perfect sensor-to-case alignment, local
frames have been aligned algorithmically by matching angular
velocities [19], [23] or gyroscopic angles [24]. However, these
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methods are evaluated against manually-measured local frame
misalignment values and do not consider any global frame
mismatch.

Although there exist several solutions to IMU and OMC
frame misalignment, current approaches either use assump-
tions running the risk of oversimplifying or require specific
calibration procedures that involve precise measurements.
There is an opportunity to expand upon existing work with
an accurate method that is assumption-free and only requires
simple calibration.

In this work, we address this gap by proposing a simultane-
ous alignment method (SAM) that can solve for both global
and local alignment rotations using a data-based approach.
First, we formulate the problem as a quaternion-based least
squares optimization. Second, we use arm movement data
from 6 participants to evaluate the method and compare
it against custom methods based on generally accepted
assumptions. Third, we conduct a sensitivity analysis to assess
the effect of input data’s range of motion on the method
performance. Finally, we demonstrate that this method can
be applied to isolate and thus better visualize IMU drift
during dynamic motion, a challenging issue that hinders
validation of IMU-based kinematic estimators [12], [25],
[26]. Our proposed alignment method can be used by
the research community when designing and evaluating
kinematics tracking algorithms for real world applications.

II. PROBLEM DEFINITION

To understand this frame alignment problem, a represen-
tative scenario is illustrated in Fig. 1. In this scenario, an
IMU is rigidly mounted to a body-worn, 3D-printed case with
OMC markers attached. The IMU local frame (IL) is defined
by the physical placement of the sensing chip. The IMU
global frame (IG) is defined using gravity and the magnetic
north. The OMC local frame (OL) is defined by the markers
on the IMU case, and the OMC global frame (OG) is defined
using a calibration tool. A calibration tool, like the illustrated
L-frame, is commonly used in OMC systems and usually
placed flat on the ground in alignment with floor tiles or
walls for cameras to register it as the OMC global coordinate
system [27].

Mathematically, the IMU’s local and global frames are
related to those of the OMC system through

RGY = RIG RifRe, M

where R denotes the rotation of the subscript coordinate frame
expressed in the superscript coordinate frame. Out of the 4
rotation matrices in Eq.1, RS% and R!$ are measurable and
represent outputs from the OMC and the IMU respectively.
The other two matrices, RS and R.; are the unknown
misalignment rotations that need to be found:

o ROS represents the unknown global frame misalignment
between the two systems. Generally, most of the global
misalignment is around the yaw axis. This is because the
yaw axes from both systems are usually defined using
gravity. Yet, the roll and pitch axes are not aligned when
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Fig. 1. Tllustration of the local (OL, IL) and global (OG, IG) frames of an
OMC and a body-worn IMU. Rgf and Rff represent the OMC and IMU

rotation measurements respectively. RIOC? and R{JLL denote the unknown

global and local frame misalignment between the two systems respectively.

the L-frame does not point directly towards the magnetic
north.

o R represents the unknown local frame misalignment.
In the scenario described in Fig. 1, RY; represents the
mechanical misalignment between the IMU chip and the
markers mounted on its case. This alignment rotation is
expected to be constant over time given that the IMU is
rigidly attached to its case.

III. ALIGNMENT METHODS
A. Proposed Method (SAM)

In this section, we introduce the simultaneous alignment
method (SAM), a quaternion-based least squares optimization
method for simultaneously aligning the local and global
frames of IMU and OMC. Given that IMU and OMC
measurements are related by Eq. 1, the goal is the solve
for the unknown misalignments, RYS and RL:, that best
satisfy

RoF, = RIS RiE Roy Yt €(0,T) )

for a duration of time. RSY,, R}, represent time series
data of OMC and IMU measurements respectively and T’
represents the total duration of the data.

To formulate Eq. 2 into a least squares optimization, we
first convert the rotation matrices into unit quaternions by
defining

oG
Uy = ROL,u
IL \—1
a=(Roy)™ ",
Then Eq. 2 can be written into quaternion representation:

vt €10, T). “4)

_ pIa
Wy = RIL,t7

b= RS

3)

u,a = bw,

Eq. 4 can be expressed as a least squares problem with the
residual function

T
p= §:||u,5a—bth2 (5)
t=0
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where ||¢|| represents the L-2 norm of a quaternion g. The
residual function in Eq. 5 can then be simplified into

T
p=2(T+1) =2 [bwa"u]s 6)

t=0

where [g]s denotes the scalar component of quaternion ¢, and
a*, u; represent the conjugates of a and wu, respectively. For
the full derivation of Eq. 6, please refer to the appendix.

For this work, Eq. 6 was minimized numerically using
MATLAB’s fmincon function with the sequential quadratic
programming optimization algorithm. Additionally, nonlinear
equality constraints of

lall =1, oIl =1 )

are required to ensure the resulting a and b are unit quater-
nions. The optimal alignment rotations R; and RS can
then be found by converting a and b back to rotation matrices
using Eq. 3. In this work, we formulated the optimization
problem using unit quaternions and solved with a commercial
numerical solver. However, alternative methods, such as using
manifold structure of rotation groups [28], [29], may also be

used to solve Eq. 2 analytically.

B. Methods for Comparison (GOM and GYLM)

For evaluating SAM, we designed two other alignment
methods using common assumptions from literature, which
we refer to as the ‘Global Only Method’ (GOM) and ‘Global
Yaw + Local Method” (GYLM). We developed custom
methods as baselines, instead of using existing ones from
literature. This is because existing methods have different
calibration procedures with varying levels of complexity, and
may use more than just orientation information, which are
difficult to replicate and ensure fair comparison. Additionally,
most existing methods separate the local and global frame
alignment issues and do not solve our target problem of
simultaneous alignment of both frames.

1) Global Only Method (GOM): ITn GOM, we assume that
the local frames of IMU and OMC are identical. This is
a common assumption used in literature [11], [21] as the
IMU chip and its physical case are often manually aligned
and rigidly fixed. The alignment precision may vary, but for
simplicity, the local frame alignment rotation is assumed to
be identity,

Rop,. =1 ®)

For the global frame alignment, we find the rotational
differences between the OMC and IMU orientations and then
take the mean across all time points,

T
R9Y = mean(RYY ,RIY 9
TG om tE[O,T]( oLt Lt ) 9
where R” represents the transpose of a rotation matrix R.

Averaging 3D rotations can be achieved using unit quaternion
representation.

2) Global Yaw + Local Method (GYLM): In GYLM, we
acknowledge that both local and global frame alignments
are required, but with the assumption that the global frame
mismatch is in the yaw direction only. This assumption is
made because the main contributor of global frame mismatch
is the inconsistency between the magnetic north and the OMC
lab heading in the x—y plane. Additionally, due to an IMU
magnetometer’s dependence on initial factory settings and
local magnetic fields in the testing environment, more errors
in yaw may occur [20], [30]. We developed this custom
baseline method as it aligns both global and local frames,
while existing methods [19], [21], [23] address local and
global alignments independently.

GYLM can be solved in close form by first decomposing
the global alignment rotation from the GOM method from
Eq. 9 into sequential rotations of yaw, pitch and roll,

RS = R.(4)R,(0)R.(0)

where 1, 0, ¢ are yaw, pitch, and roll angles about z, y, x
axes respectively.

In GYLM, the global frame alignment is found by taking
only the yaw component of Eq. 10 using

RYE = R.(Y).

GYLM

(10)

Y

The local frame alignment is then found by applying the
global frame alignment and averaging the remaining rotational
differences across all time points:

T poG
R =mean((R%S RI¢ )R .
OL gy u tE[O,T](( IGoyim IL,t) OL,t)

(12)

IV. PROTOCOL AND METRICS
A. Experimental Setup and Protocol

We collected arm movement data from 6 human participants
to validate the methods’ performance. The data collection
was performed under Harvard Institutional Review Board
(Protocol IRB19-1321) and all participants were consented.
For each participant, we placed 3 IMUs (MTi-3 series, XSens
Technologies, Netherlands) on their torso and left and right
upper arms, as shown in Fig. 2A. Each IMU was mounted on
a custom 3D printed case with 4 OMC markers on each of the
corners, captured by 29 OMC cameras (Qualisys, Sweden).
Data from IMUs and OMC were logged and synced using a
real-time target machine (Speedgoat, Switzerland).

For each participant, two types of motion data were
collected, as illustrated in Fig. 2B. First, we asked the partic-
ipants to perform short cyclic motions of shoulder forward
flexion/extension (FF), abduction/adduction (AB), horizontal
flexion/extension (HF), and internal/external rotation (IR). IR
was performed with arms by the side and elbows bent. The
participants performed three repetitions of each motion in
their comfortable angle ranges. This cyclic motion sequence
took approximately 40 seconds on average. Next, we asked
participants to perform a long duration functional motion trial.
The participants performed overhead drilling, desk work (such
as typing and note-taking), treadmill walking, and random
arm motions. The drilling, desk work, and walking tasks were

Authorized licensed use limited to: Harvard Library. Downloaded on December 06,2022 at 01:55:20 UTC from IEEE Xplore. Restrictions apply.



A
Q OMC Cameras

0 _L O g3
Velcro Wraps Lo
IMU 5 |2
Q >
o
OMC Marker
Cluster

Speedgoat
Target Machine

A

Horizontal Flexion Internal Rotation
(3 reps) (3 reps)

B
Cyclic Motion (~40 s)

H4

Forward Flexion Abduction
(3 reps) (3 reps)

Functional Motion (10+ min)

oL % B}

Drilling Desk Work Treadmill Walking Random Motion
(3 min) (3 min) (3 min) (1 min)
Fig. 2. (A) Illustration of experimental setup including a human participant

wearing IMUs on torso and arms in a motion capture lab. (B) Photos of
motion performed during short duration cyclic motion trial and long duration
functional motion trial.

3 minutes each and the random motion was 1 minute. The
trial totaled over 10 minutes including transition time among
the tasks.

B. Evaluation Metrics

We used the root-mean-square error (RMSE) and the
Pearson’s correlation coefficient as the key evaluation metrics
to assess the performance of different alignment techniques
described in Section III. To calculate these metrics, we
first define the following time series profiles using angular
distance.

1) Time Series Profiles: Angular distance is the minimal
rotation angle that aligns one 3D rotation to another as used
by Huynh [31]. Between two rotation matrices, R; and R.,,
angular distance, 6, can be found using

tr(RTR,) — 1)

5 13)

0 = arccos (
where tr(X) represents taking the trace of a matrix X.
In this work, Eq. 13 is used for representing time series
error and motion magnitude profiles.
« Time series error profiles are calculated by finding the
angular distances between the aligned IMU orientations
and the OMC ground truth orientations. Specifically, at

each time frame, ¢, the error is calculated using Eq. 13
with
Ry, = R7SRIT \RG,

(14)
R2,t = R(O)f,t

where R, , represents the aligned IMU orientations as
described in Section II and III and R, represents the
OMC measurements.

« Time series motion magnitude profiles are calculated
using Eq. 13 with

_ OG
Rl,t - ROL,Oﬂ

oG
Ry = ROL,t

(15)
where R, , represents the OMC orientation at the initial
time frame of a motion trial and R, ; represents the OMC
orientation at each time frame, ¢. We use this calculation
to represent 3D motions with a 1D magnitude profile,
both for qualitative motion visualization and quantitative
evaluation metrics calculation.

2) RMSE & Pearson’s Correlation Coefficient: Our main
evaluation metrics for frame alignment are RMSEs and Pear-
son’s correlation coefficients. We use RMSE of the time series
error profile to evaluate frame alignment accuracy. Comparing
among the alignment methods, the one that generates the
lowest RMSE has the highest alignment accuracy.

We use Pearson’s correlation coefficients to quantify
the correlation between the time series error and motion
magnitude profiles. If the local and global frames between
an IMU and an OMC are accurately aligned, the error profile
should be independent from the motion magnitude profile,
because the alignment accuracy should not vary with where
the IMU is in space. Hence, a lower correlation coefficient
suggests a better alignment method. There is a large range
of interpretations of correlation coefficient to their labelled
strength of correlation [32]. Based on general guidelines, we
view coefficient values less than 0.3 as weak correlation,
between 0.3 and 0.5 as moderate correlation, and greater than
0.5 as strong correlation.

V. PERFORMANCE EVALUATION

To evaluate the performance of SAM, we used data from the
short cyclic motion trials from all participants and compared
its performance to that of the simplified methods, GOM and
GYLM (Section III.B). The alignment rotations were fitted
and evaluated using data from the whole cyclic motion trial.
We computed both the RMSE and the Pearson’s correlation
coefficient for evaluation and pooled the results from all
participants to account for the variance across different
participants, motions, and testing days. The multi-participant
results are presented in Table I and II.

Compared to GOM and GYLM, SAM generated the
lowest RMSEs, below 1.5° on average, for all participants
across all 3 IMU locations. We saw mostly weak correlation
between motion and error for SAM while moderate to high
correlations for GOM and GYLM. These results show the
better performance of the proposed method, which highlights
the advantage of simultaneously aligning both local and global
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TABLE I
FRAME ALIGNMENT ACCURACY (RMSE)

IMU Location SAM GYLM GOM
Torso | 0.64° + 0.54° 0.71° + 0.54° 0.75° + 0.53°
Left Arm 1.06° + 0.14° 3.20° + 1.38° 7.32° + 1.13°
Right Arm 1.49° + 0.45° 3.04° + 0.56° 7.16° £ 0.99°
TABLE 11

CORRELATION BETWEEN ALIGNMENT ERROR AND MOTION MAGNITUDE
(PEARSON’S CORRELATION COEFFICIENTS)

IMU Location SAM GYLM GOM
Torso 0.32 + 0.17 0.48 £ 0.17 0.52 £ 0.16
Left Arm 0.26 + 0.05 0.57 £ 0.16 0.80 + 0.05
Right Arm 0.18 + 0.12 0.65 + 0.14 0.71 £ 0.12

frames and not relying on common assumptions, such as
perfect sensor-to-case alignment or global misalignment in
yaw direction only. When comparing within the assumption-
based methods, GYLM outperforms GOM with lower RMSEs
and correlation coefficients, indicating that in this scenario
the assumption made by GYLM is better than the one by
GOM.

It is interesting to compare the performance of the torso
IMU to those of the arm IMUs. For all three methods,
RMSE of torso IMU is lower than those of the arm IMUs.
Comparing across methods, SAM has much lower absolute
and percentage RMSE reduction (compared to GYLM and
GOM) for torso than for arm IMUs. Lastly, for SAM, the
correlation coefficient for torso IMU is higher and more
variable than for arm IMUs. Such discrepancy between the
torso IMU and the arm IMUs is likely because the torso
IMU goes through a much smaller range of motion during
the trials. The effect of range of motion on alignment quality
is studied more in detail in the following section.

To visualize the alignment performances, Fig. 3 shows
a time series example of an arm IMU’s motion with the
corresponding error profiles from the 3 methods. The motion
and error profiles are defined using angular distance in Section
IV.B. The top plot shows the motion magnitude profile,
which can be interpreted as the magnitude of the arm IMU
rotation during the trial relative to the initial arms-down
position. Using this magnitude-only representation, we can
better see if the error profile is correlated with the motion.
The bottom error plot reflects the results from Tables I and
II, with SAM having the lowest error and least correlated
error profile. It is interesting to note that residual errors are
higher during the dynamic regions than the static ones. These
remaining errors after applying SAM are likely due to IMU
and OMC measurement noises, with greater inconsistencies
during dynamic motions.

VI. SENSITIVITY ANALYSIS

Because SAM is an optimization based method, its align-
ment accuracy is affected by the input data. Specifically, we
hypothesize that, if the input data contains a more diverse
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Fig. 3. Example time series plots of the arm motion magnitude profile

(top) and the error profiles from the 3 alignment methods (bottom). Data is
collected from one participant during the cyclic motion trial. Compared to the
other two methods, the proposed alignment method (in green) generates the
lowest error with error profile the least correlated to the motion magnitude.

set of rotations, SAM could find more accurate alignment
matrices.

To understand how the range of motion of the input data
affects the algorithm performance, we performed a sensitiv-
ity analysis to explore the relationship between alignment
accuracy and the averaged pairwise angular distance (APAD).
Specifically, for a set of 3D rotations, APAD is calculated
by (1) computing the angular distances between each unique
pair of rotations using Eq. 13 and (2) taking the average of
all pairwise angular distances. This pairwise metric serves
as a proxy for range of motion as it not only quantifies the
magnitude of motion present in the dataset, but also accounts
for the directionality. For instance, orientations clustered
about a single axis of rotation will yield a lower APAD value
than rotations about multiple axes.

To perform sensitivity analysis, we used data from both
arm IMUs during cyclic motion trials for all participants. We
broke the trials into non-overlapping windows, ranging from
0.5 seconds to 40 seconds. We used the data within each
window to fit alignment rotations and used the corresponding
full trial data to measure the alignment accuracy. APAD of
each window was then calculated and evaluated against the
alignment accuracy.

Fig. 4 shows the range of motion sensitivity analysis
results from the 3 methods. The performance of GOM and
GYLM stay mostly constant, whereas that of SAM drastically
improves with larger APAD. This trend is expected for
an optimization based method as more diverse data would
allow more accurate fit that can better explain the alignment
discrepancies throughout the entire trial. We then used paired
t-tests to evaluate the statistical significance in the distribution
difference between SAM and GOM and between SAM and
GYLM. Quantitatively, SAM has higher error (p < 0.05)
than GOM for APAD < 3.2° and GYLM for APAD < 8.2°.
This relationship is reversed with larger APAD where SAM
outperforms (p < 0.05) GOM for APAD > 4.1° and GYLM
for APAD > 11.4°. Compared to GOM and GYLM, SAM
has more unknown parameters to fit and thus is more likely to
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Fig. 4. Sensitivity analysis showing how alignment accuracy (RMSE) is
affected by average pairwise angular distance (APAD). We applied a moving
window of 7.5° APAD to get the mean (solid line) and the mean absolute
deviation (shaded region). In region A (APAD < 3.2°), SAM has higher
error than both GOM and GYLM. In region B (4.1° < APAD < 8.2°),
SAM has higher error than GYLM but lower error than GOM. In region C
(APAD > 11.4°), SAM has lower error than both GOM and GYLM. These
cutoffs were identified using paired t-tests with p < 0.05.

overfit when the input data is unrepresentative of all possible
orientations. However, with data covering enough diversity
in orientation, an assumption-free method, like SAM, can
achieve better performance than the assumption-based ones.

We also conducted a similar analysis to understand the
relationship between Pearson’s correlation coefficient and
APAD. Unlike RMSE, however, the correlation coefficient
did not exhibit any discernible trend as a function of APAD
for any of the three methods. This suggests that while the
magnitude of the error decreased when SAM was exposed to
more diverse data, the shape of the time series error profile
remained relatively consistent. That said, SAM still exhibited
a lower average correlation coefficient than GOM and GYLM
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Fig. 5. The relationship between average pairwise angular distance (APAD)
and input data time duration for our shoulder motion dataset, showing longer
data duration leads to higher APAD. The solid line represents the means at the
different durations and the shaded region represents the standard deviations.
The vertical dashed line at 5.5 seconds indicates the time duration with the
corresponding APAD greater than 11.4° with 95% confidence (z-score of
1.64). The 11.4° APAD cutoff is identified in Fig. 4 region C at which
SAM is more accurate than GOM and GYLM. This indicates that, for our
dataset, with input data duration greater than 5.5 seconds, SAM outperforms
the other methods.

(as shown in Table II).

Lastly, we evaluated the relationship between the input data
duration and the range of motion by plotting the input data
duration versus APAD. As shown in Fig. 5, the mean of APAD
increases with the input data duration. To find the minimum
acceptable duration for which SAM outperforms the other
methods in our dataset, we first identify an APAD threshold
of 11.4° from Fig. 4 at which SAM starts to show more
accurate alignment than GOM and GYLM. From Fig. 5, we
then identified time duration greater than 5.5 seconds would
correspond APAD values larger than the 11.4° threshold
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Fig. 6. Example time series plots for arm motion magnitude profile (top) and alignment error profiles (bottom) from three methods. Compared to GOM
(orange) and GYLM (blue), SAM (green) shows least motion correlated errors, especially during dynamic tasks (drilling and random motion). The weak
correlation indicates that SAM can isolate drift from misalignment errors, which is important for understanding IMU drift behaviors.

Authorized licensed use limited to: Harvard Library. Downloaded on December 06,2022 at 01:55:20 UTC from IEEE Xplore. Restrictions apply.



with > 95% confidence (z-score of 1.64). This indicates
that for our specific dataset, applying SAM with greater
than 5.5 seconds of data would generate more accurate
alignment matrices than GOM and GYLM. Although the
specific duration cutoff is a characteristic of our particular
dataset, comparable short duration values are expected to be
seen for data with different arm motions.

VII. DRIFT ISOLATION DEMONSTRATION

IMU drift is a widely known issue that occurs from
integrating noisy gyroscope signals. It is a slowly accumulated
error, especially difficult to visualize during dynamic motion.
Isolating and visualizing errors due to drift is important for
understanding sensor behaviors in different environments and
developing corrective measures.

In this final section, we demonstrate that SAM can better
isolate and visualize IMU drift compared to GOM and GYLM,
which aids in algorithm development for correcting yaw drift.
For this demonstration, we used data from one participant.
The alignment rotations were found using the entire short
cyclic motion data from that participant and were applied to
the long duration functional motion data. We visualized the
pattern of the drift using the time series error profile.

Fig. 6 shows the time series motion magnitude profile
and the corresponding error profiles from the three methods.
Among all methods, SAM resulted in an error profile least
correlated with the motion, especially for drilling and random
motions. With GOM and GYLM, the error profiles during
those dynamic tasks are highly correlated with motion.
Specifically, for those dynamic tasks, SAM has a Pearson’s
correlation coefficient of 0.04, whereas those of GYLM and
GOM are 0.74 and 0.88 respectively. These motion-correlated
errors are more likely to be from misalignment as opposed to
drift, because we expect drift to behave like a low frequency
signal. All three alignment methods result in similar drift
trends during the more static, low-motion-magnitude tasks:
desk work and treadmill walking. It is interesting to note
that during treadmill walking, all three methods show highly
noisy errors. One possibility for this observation is that there
was more marker occlusion from the OMC in our specific
treadmill setup.

With the proposed alignment method, the notorious IMU
drift can be isolated and visualized especially during dynamic
movements. This capability is valuable for understanding drift
behaviors and developing IMU de-drifting algorithms.

VIII. CONCLUSION

We proposed a method for simultaneously aligning the
global and local frames between an IMU and an OMC
system. We demonstrated its greater alignment performance
over methods requiring various simplifying assumptions
common in literature. In addition, we showed through
sensitivity analysis the importance of using input data with
diverse set of rotations to ensure alignment accuracy. Lastly,
we demonstrated the method’s capability of isolating and
visualizing IMU drift during dynamic motions, which is
difficult to achieve as any frame misalignment errors can

convolute with drift errors and hinder our ability to study
drift on its own. The proposed data-based and assumption-
free method serves as a valuable tool for evaluating and
developing IMU algorithms, such as de-drifting techniques
for long term motion tracking.

APPENDIX: SIMPLIFYING THE RESIDUAL FUNCTION
To simplify the least squares residual function, p, from
Eq. 5, we use quaternion properties of |lq]| = qq*, (pq)* =
q*p*, q¢* = 1, and q + ¢* = 2[g|s, where ¢ and p are two
quaternions and [g]s represents the scalar component of q.
Eq. 5 simplifies to Eq. 6 by
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